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Interval-censored time-to-event data

i @) @@

@ A subject participates in a longitudinal study with multiple follow-up
visits at times tjq,..., t14

@ The event of interest is experienced between the 2nd and 3rd visit
@ The exact time-to-event is unknown, but we know the interval in
which it happened

@ Once the event has occurred, the person is considered "positive” for
the remainder of the study
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Data may include left- and right-censored cases

(R
33

Subject 3 t

Subject 4 Q t42

@ Subject 3 is right-censored; they never experience the event

@ Subject 4 is left-censored; they experienced the event before entering
the study

@ By setting tjg = 0 and tj5 = oo for all subjects, these can be treated
similarly to interval-censored data
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Using self-reports to study time-to-event data

@ In large cohort studies,
gold-standard diagnostic
testing can be expensive and
infeasible -

o Alternative: self-reported
measurement of an event

@ Example: diabetes in the
NHANES Epidemiological i e o e
Follow-up Study (NHEFS) Bisa2%el2

- REFUSED
o Gold-standard tests are 3 o1 Ascemamneo
based on blood draws It | T—
e A questionnaire-based e e i T ey L e s e
measure serves as a proxy? SR PREVIOUS INTERVIEW OR THE SUBJECT WAD NOT BEEN.

PREVIOUSLY INTERVIEWED. IF THE RESPONDENT VOLUNTEERED
BORDERLINE DIABETES, COL 721-722 IS CODED 95

“lmage: 1997 NHEFS interview,
https://wwwn.cdc.gov/nchs/
nhanes/nhefs/
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Limitations of self reports

@ Self reports can have varying accuracy and precision
e Stigma may prevent a person from reporting an event that happened
e Misunderstanding of a conversation with a physician could lead to a
false positive report
e A person may not remember a diagnosis they received

@ In contrast, gold standard diagnostics are typically highly accurate
and precise

o Well-established technology
e FDA diagnostic approval process
e Clinicians are experienced in their use

@ Common methods for survival analysis assume error-free reporting;
icensmis addresses the error directly
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Quantifying error in self-reports

Self-Report by
Questionnaire

Self-report Self-report
that event has | that event has
Gold Standard occurred not occurred
Diagnosis
Event has | True Positive Falsg
occurred (TP) Negative
(FN)
E

Event has not | False Positive | True Negative
occurred (FP) (TN)
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Sensitivity and specificity are key characteristics of

self-reports

e Sensitivity = TP/(TP + FN) =
P(Subject self-reports they
experienced the event | the
event has occurred)

@ Specificity = TN/(TN + FP) =

. Event h
P(Subject does not self-report Securrod
the event | the event has not
occurred)

Event has not

@ These two summary measures occurred

can be used to incorporate error
into time-to-event models
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Model notation

For each of N subjects, indexed by i, we use the following notation:
@ n;: the number of visits (tests) for person i
o t; = (ti1,..., tin;): the set of distinct, ordered visit times
o R; = (Ri1,..., Rin;): the self-reported outcome at each visit

e Ry = 0 if the subject self-reports they have not experienced the event
at visit i

o Ry =1 if they report that they have
@ X;: the time at which person i experiences the event

Assume there are J total distinct visit times across the N participants. We
represent these ordered times as:

@ 7= (T0,T1y--TJs1)

@ To handle left- and right-censored cases, set 79 = 0 and 741 = o0
@ Note 7 has the following property:

O=70<7 < - <Typ1 =00 (1)
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Self-report values depend on sensitivity and specificity

Suppose subject i experiences the event at time X;. What will they report
at each of their visit times tj1,. .., ti,,?
o Case 1, perfect self-reports:
o Ry is deterministic and depends only on whether the event has

happened yet or not
0 ty <X
Rik _ ik = A\ (2)
1ty > X
@ Case 2, error-prone self-reports:

@ Ry is now a random variable depending on sensitivity 1 and specificity
$o

1-— tie < X;
Pr(Ry =1) = P0 tik = (3)
1 tik > X;

@ Note that if o1 =1 and ¢y = 1 (perfect sensitivity and specificity),
Case 2 reduces to Case 1
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Incorporating sensitivity and specificity into the likelihood

For each person i, the probability of observing their sequence of n;
self-reports R; at times t; can be expressed as:

J+1 n;
gRitin) =Y Pr(riq < Xi <) [[ Pr(Rulmj 1 < Xi < 7. tu) (4)
j=1 k=1

@ 0;: Probability that the event occurs between times 7;_; and 7;

e Cj: Conditional probability of the person’s data given the event
occurs between 7;_1 and 7; 1

@ We are interested in estimating 0;; Cj; is a function of the sensitivity
1 and specificity ¢g

'Under the assumption that R; are independent given X;
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A Cox PH framework enables incorporation of covariates

Consider a covariate vector z; for each individual

@ The Cox PH model assumes that the hazard function has the form
A(t|zi) = Ao(t) exp(ziB)

@ An equivalent formulation in terms of the survival function is
5(t|zi) = So(t) exp(exp(z;3))

@ Our modified Cox PH likelihood takes the form
N J+1
00,8)=> log [ > D; exp{exp(zi8)} | . (5)
i=1 j=1
° is the baseline survival function at time 7;

Dj; is a function of Cj;, which is a function of test sensitivity ¢ and
test specificity ¢q
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Example: Diabetes self-reports in the NHANES NHEFS

o NHANES: National Health And
Nutrition Examination Study, an \’
ongoing study of the US Centers for
Disease Control and Prevention

@ Conducted in some version since 19597 n h a n eS

o N H EFS N HAN ES I Epldemlologlc The Nation’s Mobile Health Survey
Follow-up Study

o Initial exam in NHANES | (1971-1974)
e Four follow-up interviews between
1982 - 1992
@ At each interview, subjects were asked
if a doctor had ever told them they had
diabetes

“https://wwwn.cdc.gov/nchs/nhanes/
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Is there an association between age at study entry and

time to diabetes onset?

e N = 9385 subjects with Assaociation of Age Group with Diabetes
diabetes status self-reported :
at least once in the o
follow-up interview period S -

@ 698 of these subjects Mo
reported onset of diabetes : - [l
during the study (10-year oo
incidence &~ 7.4% s

S O . 4} e

(60.70)- 1
'

Age Group

é [70.100)

@ Assumed sensitivity
1 = 0.55 and specificity N
©o = 0.99 based on previous “[HEEREE
studies in the Women's
Health Initiative [1] oo o ddb s
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Estimated time to diabetes onset

Naive Method Overestimates Survival
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© Power calculations with icpower
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Review of power

Rejection region:
Reject H in favor of H. if 8, > B~

0 B* B

H,: log hazard ratio = 0 vs. H,: log hazard ratio =
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Review of power

Non-rejection region:
Fail to reject H, if B, <= p*

0 B B

H,: log hazard ratio = 0 vs. H,: log hazard ratio =
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Review of power

Type 2 error:
Fail to reject H, when H, is true

0 B B

H,: log hazard ratio = 0 vs. H,: log hazard ratio =
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Review of power

Type 2 error: Power =1 - Type Il Error
Fail to reject H) when H, is true

0 B B

H,: log hazard ratio = 0 vs. H,: log hazard ratio =
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Power calculations in self-reported time-to-event data

Estimating the standard error of the null distribution is a critical step

This depends on the sampling distribution of 3

If self-reports are assumed to be perfect, the null distribution will be
incorrectly estimated

Incorporating sensitivity and specificity of self-reports is essential for
correct power calculations
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Using the modified Cox PH likelihood to estimate SE(/3)

e Earlier, we showed the likelihood derived by Gu et al. (2015) [2],
noted as (6, 3)

@ To estimate the standard error of the sampling distribution of 5 under
the null hypothesis, we use the Fisher information:

82
IZ(B) =E |—=/4(0
(3) =E |~ 540.5)] ()
@ Specific examples of this matrix are derived by Gu et al. 2016 [3]

@ Estimation is implemented in the icpower function of the icmis
package.
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Other study characteristics affecting power

In the setting of error-prone, time-to-event data, there are two key factors
affecting power beyond the usual questions of sample size and effect size:

o Testing strategy

o “No Test after First Positive” (NTFP): Once a subject self-reports a
positive result, they have no further tests.

e “Missing Completely At Random” (MCAR): Testing continues
throughout the study regardless of the value of the self reports. Any
missing reports are assumed to be completely at random.

@ Censoring

e At any point in the study, individuals may drop out of the study or be
lost to follow-up.

e Censoring probabilities at each test time point can be specified when
running power calculations in icensmis.

e Independent censoring is assumed throughout.
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Necessary sample size varies non-linearly with test

sensitivity and specificity

Sensitivity/Specificity and Sample Size
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More frequent visits yield increased power

Power and Test Frequency
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Power is higher for MCAR than NTFP study designs

Power and Missingness Pattern
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I

e MCAR
= NTFP
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Using icpower in our Shiny app

icpower() Study Design

Aot
hazard rato, aensitiy,
apeciicy, and possile survval functions at each Goservation ime,

Seloct Design Type

o vow
s
w0 Entor the Hazard Rato
L ot
o Entor tho Probabity o Missngnoss
5 °° : 0s
£os
Entor Proportion ofSubjcts i Baseine
o Group
e

o 000 10000 15000 2000 2500 a0000

Specitity Sonsitivity

Ryan Sheehan

9361145 09273274 09186229 0.9100000

@ Shiny app available at
https://raji-balasubramanian.shinyapps.io/icpower_graph/
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High-dimensional predictors in self-reported, time-to-event

data

@ High-dimensional: number of samples n is smaller than the number of
predictors p (usually n << p)
@ Examples:

e Study of plasma metabolomics profiles consisting of 500 assayed
metabolites and cardiovascular disease onset in a cohort of ~ 100
individuals

e Study of genetic variants and the time to diabetes onset, using a SNP
array with hundreds of thousands of SNPs measured on ~ 1000
individuals

@ We integrate tools for variable selection in high-dimensional data with
the error-prone Cox PH model introduced above

e icRSF: Random survival forests
e bayes_fit: Bayesian variable selection
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Interval-Censored Random Survival Forests (icRSF)

@ A random survival forest is an
ensemble of tree models

@ In icRSF, trees are grown based
on using our modified Cox PH
likelihood to define a splitting
criterion

@ Variable importance is quantified
based on these likelihood
differences across all the trees

@ RSF is a previously established
method (Ishwaran 2008) [4]

@ The contribution of icRSF is to
account for the error-prone
nature of the data
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RSF on Simulated Data

Figure 1: icRSF variable importance in simulated data with N = 500 and
P = 1000, with 50 true predictors
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Bayesian Variable Selection (BVS) Framework

Survival probabilities # are assumed to have a Dirichlet(1) prior, while a
spike-and-slab prior is assumed for each predictor's effect f3:

T T *
: Area under

0 ~ Dirichlet(1) curve = y
p

Bph’p ~ ’yPN(O, b2) +
Yplw ~ Bernoulli(w)

w ~ Beta(wl, W2)

B,=0

o Note that BVS is previously established work [5, 6]

@ The contribution of icensmis is to account for the error-prone nature
of the data by model fitting with our modified Cox PH likelihood
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BVS on Simulated Data

Figure 2: BVS variable importance in simulated data with N = 500 and
P = 1000, with 50 true predictors

Bayesian Variable Selection
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Demonstration: Using the icmis function in R

@ subject: a unique identifier for each

individual
@ testtime: time of the self-report
mod_fit <- icmis(subject = ID, @ result: 0 for no event, 1 for event
testtime = time, . . .
e @ data: data frame including covariates
data = icmis_data_with_trt, Y sensitivity: o1
sensitivity = sens,
specificity = spec, @ specificity: ¢o
formula = ~ factor(trt_groups), .
. @ formula: an R formula object
control = list(maxit = D) specifying the covariates for the
modified Cox PH model
@ param:

@ control: Arguments passed on to
optim for numerical optimization
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Demonstration: Designing a study of sex differences in

stroke

Let's design a study that will use self-reports to assess sex differences in stroke incidence.
@ Endpoint: incident stroke
@ Study duration: 10 years
Sensitivity and specificity for self-reported stroke based on estimates from a
cardiovascular health study (Eliassen et al. 2016 [7]):
@ Sensitivity 1 =~ 0.81
@ Specificity o =~ 0.995
Disease-specific characteristics, estimated from a previous study of sex differences in
stroke among older individuals (Tsodak et al. 2012[8]):

@ Estimated incidence of stroke: 1.6 strokes per 100 person-years, averaged across
males and females

@ Effect size to detect: Hazard ratio of 1.14 for stroke in women vs. men

Other study characteristics:
@ Missingness mechanism: MCAR
@ Missingness probabilities: 0.01 at each visit
@ Censoring probabilities: 0.05 at each visit
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stration: using

@ survivals: baseline survival
probabilities, usually estimated from
cumulative incidence

@ HR: Hazard ratio to detect (effect size)

- - o itivity: i
power8@ = icpower(survivals = mySurv, sensitivity: ¢, estimated

HR - sensitivity
sensitivity @ specificity: g, estimated
specificity = specificity

power = ]
rho =
alpha @ rho: Percentage of participants in the

pmiss = treatment group

@ power: Desired power level

Zcel_‘lsor‘ = @ alpha: Type 1 error rate
esign

@ pmiss: Probability of a randomly
missing self-report at each test time

@ pcensor: Censoring probability at
each test time

@ design: Missingness design, one of
NTFP or MCAR
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Demonstration: icRSF

rsf_res = icrsf(data=simdata,
subject=ID,
testtimes=time,
result=result,
sensitivity=0.8,
specificity=
Xmat=Xmat,
root.size=10,
ntree= ,
ns=sqrt(ncol(Xmat)),
node=8)

@ data: a data frame containing
subject,testtimes, and result

@ subject: column name indexing
subject in data

@ testtimes: column name indexing
test times in data

@ result: column name indexing
whether or not the test has occurred
in data

sensitivity: ¢1
specificity: ¢g

Xmat: N x P matrix of samples
and covariates

root.size: node size at which
to stop growing the tree

ntree: number of bootstrapped
trees to grow

ns: number of predictors p* to
search for splitting criteria at
each node

node: for parallel computing,
number of compute nodes to use
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Demonstration: Bayesian Variable Selection

bvs_result = bvs_fit(data = simdata,
Xmat = Xmat, . .
sensitivity = @ oml: hyperparameter; shape
specificity = parameter of the Beta prior

b=1, distribution for w
oml ,

°'Y1§ e @ om2: hyperparameter; second shape
nicer = . . .
psample = 0 parameter of the Beta distribution for
initsurv = ( w

nreport =

nburn = 100 @ niter: number of MC iterations to

run

@ data: a data frame containing
subject,testtimes, and result @ psample: Monte Carlo sampling

@ Xmat: N x P matrix of samples and parameter for updating coefficients

covariates @ initsurv: proportion of subjects not

@ sensitivity: ¢ experiencing the event by end of study

@ nreport: console log from variable
fitting; parameters will be printed

every nreport iterations

@ specificity: ¢o
@ b: hyperparameter; standard deviation

of the spike portion of the . )
spike-and-slab prior for the coefficients ° nPurn. number °f. McC |.terat|ons to
8 discard as a burn-in period
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Summary of tools for self-reported time-to-event data

Function ‘ Purpose ‘ Reference
icmis | Estimate survival functions and hazard ratios | Gu et al. 2015 [2]

icpower Study design and power calculations Gu et al. 2016 [3]
icRSF | Variable selection with random survival forests | Xu et al. 2018 [9]

bvs_fit Variable selection with Bayesian methods Gu et al. 2020 [10]

Note that all of the tools above are also applicable to the more general
case of interval censored data by setting sensitivity and specificity to 1
(i.e., assuming perfect self-reports).

Xiangdong Gu; Hui Xu
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Resources

@ The R packages icensmis and icRSF are available via CRAN

@ Source code is available on Github at
https://github.com/XiangdongGu/icensmis and
https://github.com/cran/icRSF

@ Our Shiny app for power calculations is at: https:
//raji-balasubramanian.shinyapps.io/icpower_graph/

@ Slides and code from this presentation are at:
https://katehoffshutta.github.io/web/icensmis/20240229_
CSP_selfreports.html
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