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Interval-censored time-to-event data

Subject 1 t12 Xt11 t13 t14

A subject participates in a longitudinal study with multiple follow-up
visits at times t11, . . . , t14
The event of interest is experienced between the 2nd and 3rd visit
The exact time-to-event is unknown, but we know the interval in
which it happened
Once the event has occurred, the person is considered “positive” for
the remainder of the study
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Data may include left- and right-censored cases

Subject 1 t12 Xt11 t13 t14

Subject 2 t22Xt21 t23 t24

Subject 3 t31 t32 t33

Subject 4 t41 t42 t43

Subject 3 is right-censored; they never experience the event
Subject 4 is left-censored; they experienced the event before entering
the study
By setting ti0 = 0 and ti5 = ∞ for all subjects, these can be treated
similarly to interval-censored data
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Using self-reports to study time-to-event data

In large cohort studies,
gold-standard diagnostic
testing can be expensive and
infeasible
Alternative: self-reported
measurement of an event
Example: diabetes in the
NHANES Epidemiological
Follow-up Study (NHEFS)

Gold-standard tests are
based on blood draws
A questionnaire-based
measure serves as a proxya

aImage: 1997 NHEFS interview,
https://wwwn.cdc.gov/nchs/
nhanes/nhefs/
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Limitations of self reports

Self reports can have varying accuracy and precision
Stigma may prevent a person from reporting an event that happened
Misunderstanding of a conversation with a physician could lead to a
false positive report
A person may not remember a diagnosis they received

In contrast, gold standard diagnostics are typically highly accurate
and precise

Well-established technology
FDA diagnostic approval process
Clinicians are experienced in their use

Common methods for survival analysis assume error-free reporting;
icensmis addresses the error directly
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Quantifying error in self-reports
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Sensitivity and specificity are key characteristics of
self-reports

Sensitivity = TP/(TP + FN) =
P(Subject self-reports they
experienced the event | the
event has occurred)
Specificity = TN/(TN + FP) =
P(Subject does not self-report
the event | the event has not
occurred)
These two summary measures
can be used to incorporate error
into time-to-event models
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Model notation
For each of N subjects, indexed by i , we use the following notation:

ni : the number of visits (tests) for person i
ti = (ti1, . . . , tini ): the set of distinct, ordered visit times
Ri = (Ri1, . . . ,Rini ): the self-reported outcome at each visit

Rik = 0 if the subject self-reports they have not experienced the event
at visit tik
Rik = 1 if they report that they have

Xi : the time at which person i experiences the event
Assume there are J total distinct visit times across the N participants. We
represent these ordered times as:

τ = (τ0, τ1, . . . , τJ+1)

To handle left- and right-censored cases, set τ0 = 0 and τj+1 = ∞
Note τ has the following property:

0 = τ0 < τ1 < · · · < τJ+1 = ∞ (1)
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Self-report values depend on sensitivity and specificity

Suppose subject i experiences the event at time Xi . What will they report
at each of their visit times ti1, . . . , tini ?

Case 1, perfect self-reports:
Rik is deterministic and depends only on whether the event has
happened yet or not

Rik =

{
0 tik ≤ Xi

1 tik > Xi
(2)

Case 2, error-prone self-reports:
Rik is now a random variable depending on sensitivity ϕ1 and specificity
ϕ0

Pr(Rik = 1) =

{
1− ϕ0 tik ≤ Xi

ϕ1 tik > Xi
(3)

Note that if ϕ1 = 1 and ϕ0 = 1 (perfect sensitivity and specificity),
Case 2 reduces to Case 1
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Incorporating sensitivity and specificity into the likelihood

For each person i , the probability of observing their sequence of ni
self-reports Ri at times ti can be expressed as:

g(Ri , ti , ni) =
J+1∑
j=1

Pr(τj−1 < Xi ≤ τj)

ni∏
k=1

Pr(Rik |τj−1 < Xi ≤ τj , tik) (4)

θj : Probability that the event occurs between times τj−1 and τj

Cij : Conditional probability of the person’s data given the event
occurs between τj−1 and τj

1

We are interested in estimating θj ; Cij is a function of the sensitivity
ϕ1 and specificity ϕ0

1Under the assumption that Ri are independent given Xi
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A Cox PH framework enables incorporation of covariates

Consider a covariate vector zi for each individual
The Cox PH model assumes that the hazard function has the form
λ(t|zi) = λ0(t) exp(ziβ)

An equivalent formulation in terms of the survival function is
S(t|zi) = S0(t) exp(exp(ziβ))

Our modified Cox PH likelihood takes the form

`(θ, β) =

N∑
i=1

log

J+1∑
j=1

Dij(1−
j∑

k=1

θk) exp{exp(ziβ)}

 . (5)

(
1−

∑j
k=1 θk

)
is the baseline survival function at time τj

Dij is a function of Cij , which is a function of test sensitivity ϕ1 and
test specificity ϕ0
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Example: Diabetes self-reports in the NHANES NHEFS

NHANES: National Health And
Nutrition Examination Study, an
ongoing study of the US Centers for
Disease Control and Prevention
Conducted in some version since 1959a

NHEFS: NHANES I Epidemiologic
Follow-up Study

Initial exam in NHANES I (1971-1974)
Four follow-up interviews between
1982 - 1992

At each interview, subjects were asked
if a doctor had ever told them they had
diabetes

ahttps://wwwn.cdc.gov/nchs/nhanes/
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Is there an association between age at study entry and
time to diabetes onset?

N = 9385 subjects with
diabetes status self-reported
at least once in the
follow-up interview period
698 of these subjects
reported onset of diabetes
during the study (10-year
incidence ≈ 7.4%
Assumed sensitivity
ϕ1 = 0.55 and specificity
ϕ0 = 0.99 based on previous
studies in the Women’s
Health Initiative [1]
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Estimated time to diabetes onset
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Review of power

H0: log hazard ratio = 0 vs. H1: log hazard ratio = 𝜷

0 𝜷

Rejection region: 
Reject H0 in favor of H1 if 𝜷est >  𝜷*

𝜷*
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Review of power

0 𝜷

Non-rejection region: 
Fail to reject H0 if 𝜷est <=  𝜷*

𝜷*

H0: log hazard ratio = 0 vs. H1: log hazard ratio = 𝜷
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Review of power

0 𝜷𝜷*

Type 2 error: 
Fail to reject H0 when  H1 is true

H0: log hazard ratio = 0 vs. H1: log hazard ratio = 𝜷
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Review of power

0 𝜷𝜷*

Power = 1 - Type II ErrorType 2 error: 
Fail to reject H0 when  H1 is true

H0: log hazard ratio = 0 vs. H1: log hazard ratio = 𝜷
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Power calculations in self-reported time-to-event data

Estimating the standard error of the null distribution is a critical step
This depends on the sampling distribution of β
If self-reports are assumed to be perfect, the null distribution will be
incorrectly estimated
Incorporating sensitivity and specificity of self-reports is essential for
correct power calculations
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Using the modified Cox PH likelihood to estimate SE(β)

Earlier, we showed the likelihood derived by Gu et al. (2015) [2],
noted as `(θ, β)

To estimate the standard error of the sampling distribution of β under
the null hypothesis, we use the Fisher information:

I(β) = E
[
− ∂2

∂β2
`(θ, β)

]
(6)

Specific examples of this matrix are derived by Gu et al. 2016 [3]
Estimation is implemented in the icpower function of the icmis
package.
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Other study characteristics affecting power

In the setting of error-prone, time-to-event data, there are two key factors
affecting power beyond the usual questions of sample size and effect size:

Testing strategy
“No Test after First Positive” (NTFP): Once a subject self-reports a
positive result, they have no further tests.
“Missing Completely At Random” (MCAR): Testing continues
throughout the study regardless of the value of the self reports. Any
missing reports are assumed to be completely at random.

Censoring
At any point in the study, individuals may drop out of the study or be
lost to follow-up.
Censoring probabilities at each test time point can be specified when
running power calculations in icensmis.
Independent censoring is assumed throughout.

KH Shutta (kshutta@hsph.harvard.edu) icensmis 22 / 42



Necessary sample size varies non-linearly with test
sensitivity and specificity
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More frequent visits yield increased power
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Power is higher for MCAR than NTFP study designs
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Using icpower in our Shiny app

Ryan Sheehan

Shiny app available at
https://raji-balasubramanian.shinyapps.io/icpower_graph/
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High-dimensional predictors in self-reported, time-to-event
data

High-dimensional: number of samples n is smaller than the number of
predictors p (usually n << p)
Examples:

Study of plasma metabolomics profiles consisting of 500 assayed
metabolites and cardiovascular disease onset in a cohort of ∼ 100
individuals
Study of genetic variants and the time to diabetes onset, using a SNP
array with hundreds of thousands of SNPs measured on ∼ 1000
individuals

We integrate tools for variable selection in high-dimensional data with
the error-prone Cox PH model introduced above

icRSF: Random survival forests
bayes_fit: Bayesian variable selection
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Interval-Censored Random Survival Forests (icRSF)

A random survival forest is an
ensemble of tree models
In icRSF, trees are grown based
on using our modified Cox PH
likelihood to define a splitting
criterion
Variable importance is quantified
based on these likelihood
differences across all the trees
RSF is a previously established
method (Ishwaran 2008) [4]
The contribution of icRSF is to
account for the error-prone
nature of the data
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RSF on Simulated Data

Figure 1: icRSF variable importance in simulated data with N = 500 and
P = 1000, with 50 true predictors
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Bayesian Variable Selection (BVS) Framework

Survival probabilities θ are assumed to have a Dirichlet(1) prior, while a
spike-and-slab prior is assumed for each predictor’s effect βp :

θ ∼ Dirichlet(1)
βp |γp ∼ γpN(0, b2) + (1− γp)δ0

γp |ω ∼ Bernoulli(ω)
ω ∼ Beta(w1,w2)

1 - 𝛾p
Area under 
curve = 𝛾p

𝜷p = 0

Note that BVS is previously established work [5, 6]
The contribution of icensmis is to account for the error-prone nature
of the data by model fitting with our modified Cox PH likelihood
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BVS on Simulated Data

Figure 2: BVS variable importance in simulated data with N = 500 and
P = 1000, with 50 true predictors
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Demonstration: Using the icmis function in R

subject: a unique identifier for each
individual
testtime: time of the self-report
result: 0 for no event, 1 for event
data: data frame including covariates
sensitivity: ϕ1

specificity: ϕ0

formula: an R formula object
specifying the covariates for the
modified Cox PH model
param:
control: Arguments passed on to
optim for numerical optimization
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Demonstration: Designing a study of sex differences in
stroke
Let’s design a study that will use self-reports to assess sex differences in stroke incidence.

Endpoint: incident stroke
Study duration: 10 years

Sensitivity and specificity for self-reported stroke based on estimates from a
cardiovascular health study (Eliassen et al. 2016 [7]):

Sensitivity ϕ1 ≈ 0.81

Specificity ϕ0 ≈ 0.995

Disease-specific characteristics, estimated from a previous study of sex differences in
stroke among older individuals (Tsodak et al. 2012[8]):

Estimated incidence of stroke: 1.6 strokes per 100 person-years, averaged across
males and females
Effect size to detect: Hazard ratio of 1.14 for stroke in women vs. men

Other study characteristics:
Missingness mechanism: MCAR
Missingness probabilities: 0.01 at each visit
Censoring probabilities: 0.05 at each visit
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Demonstration: using icpower in R

survivals: baseline survival
probabilities, usually estimated from
cumulative incidence
HR: Hazard ratio to detect (effect size)
sensitivity: ϕ1, estimated
sensitivity
specificity: ϕ0, estimated
specificity
power: Desired power level
rho: Percentage of participants in the
treatment group
alpha: Type 1 error rate
pmiss: Probability of a randomly
missing self-report at each test time
pcensor: Censoring probability at
each test time
design: Missingness design, one of
NTFP or MCAR
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Demonstration: icRSF

data: a data frame containing
subject,testtimes, and result

subject: column name indexing
subject in data

testtimes: column name indexing
test times in data

result: column name indexing
whether or not the test has occurred
in data

sensitivity: ϕ1

specificity: ϕ0

Xmat: N × P matrix of samples
and covariates
root.size: node size at which
to stop growing the tree
ntree: number of bootstrapped
trees to grow
ns: number of predictors p∗ to
search for splitting criteria at
each node
node: for parallel computing,
number of compute nodes to use
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Demonstration: Bayesian Variable Selection

data: a data frame containing
subject,testtimes, and result

Xmat: N × P matrix of samples and
covariates
sensitivity: ϕ1

specificity: ϕ0

b: hyperparameter; standard deviation
of the spike portion of the
spike-and-slab prior for the coefficients
β

om1: hyperparameter; shape
parameter of the Beta prior
distribution for ω
om2: hyperparameter; second shape
parameter of the Beta distribution for
ω

niter: number of MC iterations to
run
psample: Monte Carlo sampling
parameter for updating coefficients
initsurv: proportion of subjects not
experiencing the event by end of study
nreport: console log from variable
fitting; parameters will be printed
every nreport iterations
nburn: number of MC iterations to
discard as a burn-in period
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Summary of tools for self-reported time-to-event data
Function Purpose Reference

icmis Estimate survival functions and hazard ratios Gu et al. 2015 [2]
icpower Study design and power calculations Gu et al. 2016 [3]

icRSF Variable selection with random survival forests Xu et al. 2018 [9]
bvs_fit Variable selection with Bayesian methods Gu et al. 2020 [10]

Note that all of the tools above are also applicable to the more general
case of interval censored data by setting sensitivity and specificity to 1
(i.e., assuming perfect self-reports).

Xiangdong Gu; Hui Xu
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Resources

The R packages icensmis and icRSF are available via CRAN

Source code is available on Github at
https://github.com/XiangdongGu/icensmis and
https://github.com/cran/icRSF

Our Shiny app for power calculations is at: https:
//raji-balasubramanian.shinyapps.io/icpower_graph/

Slides and code from this presentation are at:
https://katehoffshutta.github.io/web/icensmis/20240229_
CSP_selfreports.html
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