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Multi-omic networks
DRAGON: Determining Regulatory Associations using Graphical 
models on multi-Omic Networks
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Figure 1: Example of a multi-omic network of methylation and gene expression data. 

(a) Network representation (b) Adjacency matrix representation

 (a) Estimate adjacency matrix from DRAGON  (b) Find methylation communities (c)  Find expression communities

(e) Find methylation-expression edges in significantly interconnected communities
(d) Find significant edges between 
methylation and expression communities

Figure 2: Multi-omic Community Detection in Methylation - Gene Expression Networks
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Gaussian Graphical Models (GGMs)
In a GGM, we assume data are Gaussian and let edge weights
represent partial correlations:

⇢Xi ,Xj |V\{Xi ,Xj} =
Cov [Xi ,Xj |X�ij ]p

Var [Xi |X�ij ]
p

Var [Xj |X�ij ]
(1)

In this setting, absence of an edge () zero partial correlation
() conditional independence

Undirected Graphical Model with Local Markov 
Property
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● The absence of an edge between two nodes 
indicates that they are conditionally independent 
given the other nodes in the graph 

⇒

Figure 1: In this GGM, X2 and X4 are conditionally independent given X1 and X3.
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Estimating a GGM from the precision matrix

For X1, . . . ,Xn ⇠ MVN(µ,⇥�1) with sample covariance matrix S, the
precision matrix ⇥ can be converted to partial correlations, which are
the edge weights of the GGM, using the relationship:

⇢Xi ,Xj |V\{Xi ,Xj} = �
⇥ijp
⇥ii⇥jj

(2)

Estimating a GGM is therefore equivalent to estimating ⇥

Easy case: invert the sample covariance: ⇥̂ = S�1

When is this a bad idea or impossible?
When there is high collinearity among the data, S�1 will be unstable
When n < p, S�1 does not exist
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Covariance shrinkage for precision matrix estimation1

For sample covariance S and target matrix T (e.g., T = Ip and
T = diag(S)), define

S 0 = (1� �)S + �T (3)
S 0 is not unbiased, but it is now invertible and can be used to
estimate a precision matrix:

⇥̂� = (S 0)�1 = {(1� �)S + �T}�1 (4)

lambda = 0 lambda = 0.3 lambda = 0.5 lambda = 0.9

1Ledoit, O., Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. Journal of
multivariate analysis, 88(2), 365-411.
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Covariance shrinkage with two omics layers
Toy example

n = 15 observations
p1 = 9 predictors in omics layer 1
p2 = 15 predictors in omics layer 2
Layer 2 has higher correlations

Covariance shrinkage treats both layers identically, losing information
from layer 1 because of the characteristics of layer 2

lambda = 0 lambda = 0.3 lambda = 0.5 lambda = 0.9
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Extending Covariance Shrinkage with DRAGON

DRAGON extends covariance shrinkage to handle different data types
by introducing two shrinkage parameters:

⇥̂ =

✓
(1� �1)S(1,1)

p
1� �1

p
1� �2S(1,2)

p
1� �1

p
1� �2S(2,1) (1� �2)S(2,2)

◆
+

✓
�1T (1) 0

0 �2T (2)

◆��1

(5)

Special cases of �
Example 1: �1 = 1 or �2 = 1 “decouples” the technologies
Example 2: �1 = �2 yields ⇥̂ = ((1� �)S + �T )�1; the estimator
reduces to the original covariance shrinkage and the omics are treated
the same
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DRAGON enables omic-specific shrinkage

(a) Classical covariance shrinkage

lambda = 0 lambda = 0.3 lambda = 0.5 lambda = 0.9

(b) Covariance shrinkage with DRAGON
lambda1 = 0
lambda2 = 0

lambda1 = 0
lambda2 = 0.3

lambda1 = 0
lambda2 = 0.5

lambda1 = 0
lambda2 = 0.9
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DRAGON outperforms standard GGMs in simulations

Table 1: Simulation study design; p1 = 100, p2 = 500 predictors in layer 1 and 2

Simulation Edge Densities
A ⌘(1,1) = ⌘(1,2) = ⌘(2,2) = 0.05
B ⌘(1,1) = ⌘(1,2) = 0.05; ⌘(2,2) = 0.005
C ⌘(1,1) = 0.005; ⌘(1,2) = ⌘(2,2) = 0.05
D ⌘(1,1) = 0.101, ⌘(1,2) = 0.01, ⌘(2,2) = 0.004

Figure 3: AUC for DRAGON (blue) and a standard GGM (red)
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Application: multi-omic networks of promoter methylation
and gene expression in breast cancer

DNA methylation in the promoter region of a gene can affect the
ability of the DNA to bind transcription factors and recruit the
transcriptional machinery
Typically, promoter methylation is associated with repression and
demethylation is associated with activation of a gene
To investigate these relationships in breast cancer, we built DRAGON
networks on promoter methylation and gene expression of 1557
transcription factors based on samples from 765 women with breast
cancer in The Cancer Genome Atlas (TCGA)
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DRAGON Methylation-Gene Expression Network
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Multi-omic network hubs
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Community detection for multi-omic biomarkers
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Software and code availability

DRAGON is available as Python
software in the Network Zoo

Github: https://github.
com/netZoo/netZooPy
Conda: https://anaconda.
org/netzoo/netzoopy

A Jupyter notebook showing how to
use DRAGON is available at the
NetworkZoo netbooks site: http:
//netbooks.networkmedicine.org/
Code for the TCGA breast cancer
analyses is available at
https://github.com/
katehoffshutta/DRAGON-TCGA-BRCA
Methodology is described in our
preprint: https://doi.org/10.
48550/arXiv.2104.01690

KH Shutta (kshutta@hsph.harvard.edu) DRAGON Multi-omic GGMs 14 / 15

https://github.com/netZoo/netZooPy
https://github.com/netZoo/netZooPy
https://anaconda.org/netzoo/netzoopy
https://anaconda.org/netzoo/netzoopy
http://netbooks.networkmedicine.org/
http://netbooks.networkmedicine.org/
https://github.com/katehoffshutta/DRAGON-TCGA-BRCA
https://github.com/katehoffshutta/DRAGON-TCGA-BRCA
https://doi.org/10.48550/arXiv.2104.01690
https://doi.org/10.48550/arXiv.2104.01690


Acknowledgments

Des Weighill, Rebekka Burkholz,
Marouen Ben Guebila, Helena
U. Zacharias, Dawn L. DeMeo,
John Quackenbush, Michael
Altenbuchinger
This work was supported by the
NHLBI of the NIH under award
number 2T32HL007427.
The results shown here are in
whole or part based upon data
generated by the TCGA
Research Network: https:
//www.cancer.gov/tcga. We
gratefully acknowledge the
participants of TCGA.

Questions?
If you are interested in this, please reach out!

kshutta@hsph.harvard.edu
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